3.703 \(\int \frac {(f+g x) (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=125 \[ \frac {2 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} \left (2 a e^2 g-c d (9 e f-7 d g)\right )}{63 c^2 d^2 e (d+e x)^{7/2}} \]

[Out]

-2/63*(2*a*e^2*g-c*d*(-7*d*g+9*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c^2/d^2/e/(e*x+d)^(7/2)+2/9*g*(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c/d/e/(e*x+d)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {794, 648} \[ \frac {2 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2} \left (2 a e^2 g-c d (9 e f-7 d g)\right )}{63 c^2 d^2 e (d+e x)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(-2*(2*a*e^2*g - c*d*(9*e*f - 7*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(63*c^2*d^2*e*(d + e*x)^(
7/2)) + (2*g*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(9*c*d*e*(d + e*x)^(5/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rubi steps

\begin {align*} \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx &=\frac {2 g \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}+\frac {1}{9} \left (9 f-\frac {7 d g}{e}-\frac {2 a e g}{c d}\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx\\ &=\frac {2 \left (9 f-\frac {7 d g}{e}-\frac {2 a e g}{c d}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{63 c d (d+e x)^{7/2}}+\frac {2 g \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{9 c d e (d+e x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 64, normalized size = 0.51 \[ \frac {2 (a e+c d x)^3 \sqrt {(d+e x) (a e+c d x)} (c d (9 f+7 g x)-2 a e g)}{63 c^2 d^2 \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(2*(a*e + c*d*x)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-2*a*e*g + c*d*(9*f + 7*g*x)))/(63*c^2*d^2*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [A]  time = 1.11, size = 173, normalized size = 1.38 \[ \frac {2 \, {\left (7 \, c^{4} d^{4} g x^{4} + 9 \, a^{3} c d e^{3} f - 2 \, a^{4} e^{4} g + {\left (9 \, c^{4} d^{4} f + 19 \, a c^{3} d^{3} e g\right )} x^{3} + 3 \, {\left (9 \, a c^{3} d^{3} e f + 5 \, a^{2} c^{2} d^{2} e^{2} g\right )} x^{2} + {\left (27 \, a^{2} c^{2} d^{2} e^{2} f + a^{3} c d e^{3} g\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{63 \, {\left (c^{2} d^{2} e x + c^{2} d^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/63*(7*c^4*d^4*g*x^4 + 9*a^3*c*d*e^3*f - 2*a^4*e^4*g + (9*c^4*d^4*f + 19*a*c^3*d^3*e*g)*x^3 + 3*(9*a*c^3*d^3*
e*f + 5*a^2*c^2*d^2*e^2*g)*x^2 + (27*a^2*c^2*d^2*e^2*f + a^3*c*d*e^3*g)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a
*e^2)*x)*sqrt(e*x + d)/(c^2*d^2*e*x + c^2*d^3)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m operator + Error: Bad Argument Valueindex.cc index_m operator + Error: Bad Argument Valueindex.cc
 index_m operator + Error: Bad Argument ValueEvaluation time: 5.43Done

________________________________________________________________________________________

maple [A]  time = 0.00, size = 67, normalized size = 0.54 \[ -\frac {2 \left (c d x +a e \right ) \left (-7 c d g x +2 a e g -9 c d f \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}{63 \left (e x +d \right )^{\frac {5}{2}} c^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)/(e*x+d)^(5/2),x)

[Out]

-2/63*(c*d*x+a*e)*(-7*c*d*g*x+2*a*e*g-9*c*d*f)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)/c^2/d^2/(e*x+d)^(5/2)

________________________________________________________________________________________

maxima [A]  time = 0.57, size = 141, normalized size = 1.13 \[ \frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} + 3 \, a^{2} c d e^{2} x + a^{3} e^{3}\right )} \sqrt {c d x + a e} f}{7 \, c d} + \frac {2 \, {\left (7 \, c^{4} d^{4} x^{4} + 19 \, a c^{3} d^{3} e x^{3} + 15 \, a^{2} c^{2} d^{2} e^{2} x^{2} + a^{3} c d e^{3} x - 2 \, a^{4} e^{4}\right )} \sqrt {c d x + a e} g}{63 \, c^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 + 3*a^2*c*d*e^2*x + a^3*e^3)*sqrt(c*d*x + a*e)*f/(c*d) + 2/63*(7*c^4*d^4*
x^4 + 19*a*c^3*d^3*e*x^3 + 15*a^2*c^2*d^2*e^2*x^2 + a^3*c*d*e^3*x - 2*a^4*e^4)*sqrt(c*d*x + a*e)*g/(c^2*d^2)

________________________________________________________________________________________

mupad [B]  time = 3.37, size = 134, normalized size = 1.07 \[ \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {2\,c^2\,d^2\,g\,x^4}{9}+\frac {2\,a\,e\,x^2\,\left (5\,a\,e\,g+9\,c\,d\,f\right )}{21}+\frac {2\,c\,d\,x^3\,\left (19\,a\,e\,g+9\,c\,d\,f\right )}{63}-\frac {2\,a^3\,e^3\,\left (2\,a\,e\,g-9\,c\,d\,f\right )}{63\,c^2\,d^2}+\frac {2\,a^2\,e^2\,x\,\left (a\,e\,g+27\,c\,d\,f\right )}{63\,c\,d}\right )}{\sqrt {d+e\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((2*c^2*d^2*g*x^4)/9 + (2*a*e*x^2*(5*a*e*g + 9*c*d*f))/21 + (2*
c*d*x^3*(19*a*e*g + 9*c*d*f))/63 - (2*a^3*e^3*(2*a*e*g - 9*c*d*f))/(63*c^2*d^2) + (2*a^2*e^2*x*(a*e*g + 27*c*d
*f))/(63*c*d)))/(d + e*x)^(1/2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________